A novel manufacturing chain for low cost 3D textile reinforced polymer composites

ALMANS A Ana1,a, FAZELI Monireh2,b LAURENT Benoit3,c, PADROS Pere4,d and HÖRLESBERGER Marianne5,e

1Xedera e.U, Halbgasse 15/2, 1070 Vienna, Austria
2ITM, TU Dresden, Hohe Str. 6, 01069 Dresden, Germany
3Federal Mogul Systems Protection, 69, Rue Henri Laroche, 60800 Crépy en Valois, France
4Promaut, Carrer Andorra 22, 08830 St. Boi de Llobregat, Spain
5Austrian Institute of Technology, Donau-City-Strasse 1, A-1220 Vienna, Austria

aaam@xedera.eu, bMonireh.Fazeli.Zoghalchali@tu-dresden.de, cbenoit.laurent@federalmogul.com, dppadros@promaut.com, emarianne.hoerlesberger@ait.ac.at

Keywords: manufacturing chain, 3D textiles, textile reinforced composites, hybrid yarn.

Abstract. The project 3D-LightTrans aims to create a highly flexible manufacturing chain for the low cost production of integral large scale 3D textile reinforced polymer composite parts. In a novel approach, multi-material semi-finished fabrics made of hybrid yarn are formed to deep draped pre-fixed multi-layered and multifunctional 3D-textile pre-forms. These are then efficiently processed into the final composite part by thermoforming. This paper presents the results achieved by the project consortium during the last three years, including the development and optimization of the individual processes for prototype production, with a focus on two selected automotive end products, and the adaption of equipment for industrial scale manufacturing.